
Section 5

Lecture 2
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Main message from Lecture 1

The interpretation of (conditional) associations is subtle
(Think about our death penalty example and GRE example).

We introduced counterfactual random variables: say, Y a, the
outcome if we intervened to set A to a.

We saw that individual level e!ects (Y a=1

i → Y
a=0

i ) are essentially
never observable.

The previous session was fairly conceptual.
Now we are going to be more explicit.
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Plan for today

Clarify causal questions

Identification

Consistency, Exchangeability, Positivity

Do identification proofs (Motivate estimators)

Consider a conditional randomized trial

Observational study

E!ect modification

Interaction
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...

Instead of saying association is not causation, we will formalize when an
association can be interpreted causally.
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Questions

The following slides just give some examples on questions of di!erent
types.

Descriptive / predictive:
“Is this patient at high risk of developing complications during
surgery?”

Causal:
“Which type of anaesthetic should this patient receive to reduce the
risk of complications during surgery?”
“How does the amount of anaesthetic a!ect the risk of complications
during surgery?”
“What can be done to reduce the risk of complications during surgery
for an average / a particular type of patient?”
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Questions

Descriptive / predictive:
“Which type of client will buy which kind of product?”

Causal:
“Should advert be at the top or bottom of website to increase the
probability of viewing product?”
“How does the size of advert a!ect the probability of viewing product?”
“How can I get a client to buy my product?”
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Questions

Descriptive / predictive:
“Who is most likely to become long-term unemployed?”

Causal:
“Will a minimum wage legislation increase the unemployment rate of a
country?”
“How does the size of advert a!ect the probability of viewing product?”
“What can be done to prevent someone from becoming unemployed?”
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E!ect contrasts

Additive e!ect: E(Y a=1)→ E(Y a=0) = E(Y a=1 → Y
a=0).

The additive e!ect is an average over individual level causal e!ects.
These are marginal quantities.

Relative e!ect: E(Y a=1)

E(Y a=0)
↑= E

(
Y a=1

Y a=0

)
.

The relative e!ect is not an average over individual level causal
e!ects.
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Causal e!ects in the population

More generally, we can consider population causal e!ects8:

Definition (Population causal e!ect)

A population causal e!ect can be defined as a contrast of any functional
of the distributions of counterfactual outcomes in the same
(sub)population under di!erent interventions.

For example VAR(Y a=1)→ VAR(Y a=0).
Remember that we cannot identify VAR(Y a=1 → Y

a=0).

I will often say causal e!ect when I talk about average causal e!ect.

8Hernan and Robins, Causal inference: What if?
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Section 6

Randomisation
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Example conditions that ensure identification of causal
e!ects

Suppose that the following 3 conditions hold:

1 Y
a ↓↓ A, ↔a ↗ {0, 1} (exchangeability9).

2 P(A = a) > 0 ↔a ↗ {0, 1} (positivity10).

3 Y
a = Y for every unit with A = a (consistency11).

that is, Y = I (A = 0)Y a=0 + I (A = 1)Y a=1.

From (1)-(3), E(Y a) = E(Y | A = a).
That is, we have identified E(Y a) as a functional of observed data.
Assumptions (1)-(3) are external to the data, but – importantly – they
hold by design in a perfectly executed experiment.
Just to be clear: the counterfactual independence Y

a ↓↓ A, ↔a ↗ {0, 1}
does NOT imply the factual independence Y ↓↓ A.

9Also called ignorability.
10Also called overlap. Note that this is a feature of the distribution, not the sample.
11Similar to the condition SUTVA: Stable Unit Treatment Value Assumption.

Mats Stensrud Randomisation and Causation Spring 2025 50 / 422



A simple example of estimation of causal e!ects

Because E(Y a) = E(Y | A = a), the simple di!erence-in-means estimator,

ω̂ =
1

n1

∑

Ai=1

Yi →
1

n0

∑

Ai=0

Yi , na =
n∑

i=1

I (A = a),

is an unbiased estimator of the average (additive) causal e!ect of A in a
randomised experiment.
We will discuss estimation in more detail later in this course.
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Conditional randomisation

Let L ↗ {0, 1}
In the heart transplant example, let L = 1 if the individual is critically
ill, 0 otherwise.

Suppose A is conditionally randomised as a function of L such that
P(A = 1 | L = 0) = p0 and P(A = 1 | L = 1) = p1,
where p0 ↑= p1 and p0, p1 ↗ (0, 1).

How do we identify E(Y a)?
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Illustrative conditional experiment (trial) on heart
transplant

In this conditional randomised trial p0 = 0.5, p1 = 0.75
Compute an estimator based on the numbers above, and you will find that
Ê(Y a=1)→ Ê(Y a=0) = 0.
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Identification in a conditional randomised experiment

A is conditionally randomised such that P(A = 1 | L = 0) = p0 and

P(A = 1 | L = 1) = p1, where p0 →= p1 and p0, p1 ↑ (0, 1).

Y
a ↑↓↓ A, ↔a ↗ {0, 1} (Exchangeability from Slide 50 may fail), but

1 Y
a ↓↓ A | L, ↔a ↗ {0, 1} (Exchangeability).

2 P(A = a | L = l) > 0 ↔a ↗ {0, 1}, ↔l s.t. P(L = l) > 0. (positivity).

3 Y
a = Y for every unit with A = a (consistency).

When 1-3 hold, then

E(Y a) =
∑

l

E(Y | L = l ,A = a)P(L = l).

These conditions hold by design in a conditional randomised experiment.
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Identification in a conditional randomised experiment

Proof.

E(Y a) =
∑

l

E(Y a | L = l)P(L = l)

=
∑

l

E(Y a | L = l ,A = a)P(L = l) (positivity and exchangeability)

=
∑

l

E(Y | L = l ,A = a)P(L = l). (consistency)

We say that the 3rd line is an identification formula for E(Y a).
This is a special case of a so-called G-formula (or truncation formula)12.

12James M Robins. “A new approach to causal inference in mortality studies with a
sustained exposure period—application to control of the healthy worker survivor e!ect”.
In: Mathematical modelling 7.9-12 (1986), pp. 1393–1512.
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Alternative weighted identification formula

E(Y a) =
∑

l

E(Y | L = l ,A = a) Pr(L = l)

= E
[
I (A = a)

ε(A | L) Y
]
.

where ε(a | l) = P(A = a | L = l).
Why bother with equivalent expressions?
Because they motivate di!erent estimators.
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Proof of IPW

Proof.

E
[
I (A = a)

ε(A | L) Y
]

=E
[

I (A = a)

P(A = a | L)Y
a

]
(consistency and positivity)

=E
[
E
{

I (A = a)

P(A = a | L)Y
a | L

}]

=E
{
E
[

I (A = a)

P(A = a | L) | L
]
E [Y a | L]

}
(exchangeability)

=E {E [Y a | L]} = E [Y a] .
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What if questions can be assessed in experiments

Later in this course we will discuss experiments and design,13

... but experiments are often not available because they are

impractical,

expensive,

time consuming,

unethical,

... and experiments are often not be perfectly executed.

So, what do we do? Decisions in real life have to be made...

13David Roxbee Cox and Nancy Reid. The theory of the design of experiments. CRC
Press, 2000.
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Section 7

E!ect modification and conditional e!ects
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E!ect modification

Definition (E!ect modification)

We say that V is a modifier of the e!ect of A on Y when the average
causal e!ect of A on Y varies across levels of V .

Since the average causal e!ect can be be defined on di!erent scales, e!ect
modification depends on the scale.

Definition (Qualitative e!ect modification)

We say there is qualitative e!ect modification if the average causal e!ects
if there exist v , v → such that the e!ect given V = v are in the opposite
direction of e!ects given V = v

→.

Note that:

V may or may not be equal to L.

”E!ect heterogeneity across strata of V ” is often used interchangeably with
”e!ect modification by V ”.
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Why bother with e!ect modification?

So far we have focused on average causal e!ects.

However, e!ects will often be di!erent in di!erent subpopulations of
individuals (between men and women, Greek and Romans etc.).

It is often of practical interest to target future intervention to subsets
of the full population (If the treatment has a positive e!ect in men
and negative e!ect in women, we would like to give men and women
di!erent treatments).

Some individuals will have di!erent benefit of treatment than others
(towards precision medicine and personalised medicine...).

Later in the course, we will also see that this is important when we
are going to generalize (or transport) e!ects from a study to other
populations (for example, we have done an experiment in a selected
population, and now we want to make decisions in another
population. Therefore our question is how the intervention will work
in this other population).
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Illustrative experiment (trial) on heart transplant.

We may be interested in e!ects conditional on a baseline variable V .

Here, V = 1 if woman, V = 0 if man.
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Concrete example

Suppose that:

E(Y a=1 | V = 1) = 0.6 > E(Y a=0 | V = 1) = 0.4.

E(Y a=1 | V = 0) = 0.4 < E(Y a=0 | V = 0) = 0.6.

We conclude that there is qualitative e!ect modification by gender.
Treatment A = 1

increases mortality in women, but

reduces mortality in men.

Let P(V = 0) = 0.5. Then, the average causal e!ect
E(Y a=1)→ E(Y a=0) = 0.
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Identification of e!ects modified by V .

For simplicity suppose that V and L are disjoint.

1 Y
a ↓↓ A | L,V , ↔a ↗ {0, 1} (Exchangeability).

2 P(A = a | L = l ,V = v) > 0 ↔a ↗ {0, 1}, ↔l ↗ L, ↔v ↗ V (Positivity).

3 Y
a = Y for every unit with A = a (Consistency).
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How to identify e!ect modification

Strategy for identification:
1 Stratify by V .
2 Identify the e!ect within each level V = v .

For example, in a conditional randomised trial, an identification
formula for the average causal e!ect of A = a in the stratum defined
by V = v is

E(Y a | V = v) =
∑

l

E(Y | L = l ,V = v ,A = a)P(L = l ,V = v).
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Romans vs Greeks.

Consider a conditional randomised study on Heart transplant, and let V indicate
whether the individual is Roman (V = 0) or Greek (V = 1)14

14Hernan and Robins, Causal inference: What if?
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Concrete example from Slide 63

Suppose that:

E(Y a=1) = 0.55 and E(Y a=0) = 0.40.

E(Y a=1 | V = 1) = 0.5 = E(Y a=0 | V = 1) = 0.5 (in Greeks).

E(Y a=1 | V = 0) = 0.6 > E(Y a=0 | V = 0) = 0.3. (in Romans)

We conclude that there is qualitative e!ect modification by nationality.
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Section 8

Interaction is di!erent from e!ect modification

Mats Stensrud Randomisation and Causation Spring 2025 69 / 422



Terminology

Remember the di!erence between the following terms:

Estimand (a parameter of interest, e.g. E(Y a)).

Estimator (an algorithm / function / rule that can be applied to
data).

Estimate (an output from applying the estimator to data).

We talk about bias of an estimator with respect to an estimand.
That is, the term bias (biased / unbiased) is always defined with respect
to an estimand.
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Interaction requires multiple interventions

Consider two binary treatments A ↗ {0, 1} and E ↗ {0, 1}.
For example, chemotherapy and surgery.

For each individual we can imagine 4 potential outcomes,
that is, Y a=0,e=0, Y a=1,e=0, Y a=0,e=1 and Y

a=1,e=1.

Definition (Additive interaction)

There is additive interaction if

E(Y a=0,e=0)→ E(Y a=1,e=0) ↑= E(Y a=0,e=1)→ E(Y a=1,e=1).

Additive interaction is symmetric wrt. A and E ,

E(Y a=0,e=0)→ E(Y a=1,e=0) ↑= E(Y a=0,e=1)→ E(Y a=1,e=1)

=↘ E(Y a=0,e=0)→ E(Y a=0,e=1) ↑= E(Y a=1,e=0)→ E(Y a=1,e=1).

Remember that, unlike interactions, effect heterogeneity

did only involve interventions on A, not the modifier V .
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Multiplicative interaction

Definition (Multiplicative interaction)

There is multiplicative interaction if

E(Y a=0,e=0)

E(Y a=1,e=0)
↑= E(Y a=0,e=1)

E(Y a=1,e=1)
.
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Example: Interaction

A chemotherapy, E radiation therapy, Y being cured of cancer.

Interaction question: Is there interaction between the e!ect of
receiving both A chemotherapy and E radiation therapy?

E = 0 E = 1
A = 0 0.02 0.05
A = 1 0.04 0.10

Table 1: Experiment where A and E are randomised15

15Tyler J VanderWeele and Mirjam J Knol. “A tutorial on interaction”. In:
Epidemiologic Methods 3.1 (2014), pp. 33–72.
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Conceptual example

Let Y indicate being cured. There is additive interaction because

E(Y a=0,e=0)→ E(Y a=1,e=0) ↑= E(Y a=0,e=1)→ E(Y a=1,e=1)

0.2→ 0.4 ↑= 0.05→ 0.10,

but no multiplicative interaction because 0.2
0.4 = 0.5

0.10 .

Suppose we had 100 versions of drug E after A was randomly
assigned. Then, we would expect to cure 3 additional persons if we
used all of the drug supply among those with A = 0. However, we
would expect to cure 6 additional people if we used all the supply
among those with A = 1.
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Interaction and its relation to factorial experiments16

How would you conduct an experiment to evaluate interactions
between varialbes?

We need a factorial design.
Each treatment (A and E in our example) has di!erent levels
(A,E ↗ {0, 1} in our example). A factorial design consists of an equal
number of replicates of all possible combinations of the levels of the
factors.
In our Example from Slide 73, there are 22 = 4 di!erent combination of
treatment levels.

16Cox and Reid, The theory of the design of experiments.
Mats Stensrud Randomisation and Causation Spring 2025 75 / 422



Interaction summary

Just to say that there is an interaction on some scale is relatively
uninteresting; all it means is that both exposures have some e!ect on
the outcome.

Additive interaction is more relevant to public health.
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Section 9

Causal inference from observational data
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Observational data

Definition (Observational data)

A sample from a population where the treatment (exposure) is not under
the control of the researcher.

That is, the treatment (exposure) of interest is not randomly assigned.
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Following Robins18, let’s be slightly more abstract

A dataset is a string of numbers.

These data represent empirical measurements (for example, for each
study subject, a series of treatments and outcomes).

In an analysis, calculations are performed on these numbers.

Based on the calculations, causal inference is drawn.

”Since the numerical strings and the computer algorithm applied to them

are well-defined mathematical objects, it would be important to provide

formal mathematical definitions for the English sentences expressing the

investigator’s causal inferences that agree well with our informal intuitive

understanding”
17.

17James M Robins. “Addendum to “a new approach to causal inference in mortality
studies with a sustained exposure period—application to control of the healthy worker
survivor e!ect””. In: Computers & Mathematics with Applications 14.9-12 (1987),
pp. 923–945.

18Robins, “A new approach to causal inference in mortality studies with a sustained
exposure period—application to control of the healthy worker survivor e!ect”.
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Observational studies

In an observational study, treatment is not assigned according to
randomisation, but according to someone’s choice, for example the
patient, the costumer or the medical doctor.

People who choose to take treatment may be di!erent from those
who choose not to take treatment, in the sense that they have
di!erent risk of the outcome even before the decision is made.
Y

a ↑↓↓ A, ↔a ↗ {0, 1}.
The question is, can we find the characteristics L, which are
associated with treatment and the outcome such that
Y

a ↓↓ A | L, ↔a ↗ {0, 1}?
In other words, exchangeability does no longer hold by design, but can
we assume that it holds? What do we need to include in L for this to
hold?

Yet, humans have learned a lot from observations, and many scientific
studies are not experiments. We have learned about e!ects of
smoking, global warming, evolution, astrophysics etc.
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Same data, di!erent story

Suppose the data (identical numbers to the slide 54) were from an
observational study (now A is not randomly assigned), where the doctors
tended to provide transplants (A = 1) to those with most severe disease
(L = 1)
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Example continues

Suppose first that L is the only outcome predictor unequally
distributed between those with A = 1 and A = 0. Then
Y

a ↓↓ A | L, ↔a ↗ {0, 1}.
Now, suppose that the doctors not only used L to make treatment
decisions, but also used smoking status, S ↗ {0, 1}, where smoking
status is an outcome predictor. Then, Y a ↑↓↓ A | L, ↔a ↗ {0, 1}.
Thus, Y a ↓↓ A | L, ↔a ↗ {0, 1} may not hold in observational studies.

Suppose the investigators did not measure S . Can they use the
observed data to evaluate whether Y a ↑↓↓ A | L, ↔a ↗ {0, 1} holds?
The answer is no.
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Finally, we need consistency

Well-defined interventions.

How do we reason about exchangeability for a treatment A that is
ill-defined?

Suppose now that our exposure (treatment) is obesity A.

How can we identify common causes of obesity L and the outcome
mortality Y ?

And does positivity hold? There can be some Ls (say, related to
exercise) for which nobody is obese.

The target trial where obesity is the exposure seems to involve
unreasonable interventions. How can we instantly make people
non-obese? By forcing them to exercise? By doing surgery? By diet?
All of these interventions may have di!erent e!ects.
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The target trial

We have argued that contrast between average counterfactual
outcomes under di!erent treatments are often of substantial interest.

We have also clarified that conducting an experiment guarantees
identification of a causal e!ect. However, conducting an experiment
is not always feasible.

For each causal e!ect of interest, we can conceptualize a
(hypothetical) randomised experiment to quantify it. This
hypothetical randomised experiment is called the target experiment

or target trial.

Being explicit about specifying the target trial forces us to be explicit
about the causal question of interest. We ask the question: “What
randomised experiment are you trying to emulate?”
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Specification of the target trial

To make a causal question practically interesting and useful, it is
important to clarify the following, which is part of the specification of the
target trial:

Target population (eligibility criteria).

Interventions (the treatment strategies).

Outcome (what is the outcome and when will the outcome be
measured)

Statistical analysis (application of estimators and their statistical
properties).

Also clarifies how the claims made can be falsified in the future (in
principle), by conducting the target trial. This fits with a positivist
(Popperian) view of science.
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